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A Mathematical Study of the Electron Decay

In Diffusion and Recombination Controlled Afterglows*

Lothar Frommhold, ( University of Texas), and Manfred A. Biondi, (University"

of Pittsburgh)

Abstract: The continuity'equation for electrons in a decaying plasma is
solved numerically in three dimensions including a loss term quadratic in

the electron 'density (i.e. two-body electrén-ion recombination) and an
émbipolar diffusion term. The geometries investigated are the finite cylinder,
th‘é rectangular parallelepiped and some one-dim~ensiona1 cases.. The
electron densitit_as are averaged assuming weighting functions corresponding
to various microwave probing field distributlons (cylindrical TMOIO' TEO11

and TE and retangular TE 101 mddes) and are therefore directly proport-

111
ional td measured quantities, such as resonant frequency shifts, obtained
in microwave afterglow sfudies of recombination. Three different initial
electron disti‘ibutions are used, corresponding to a uniform (recombination
controlled), a fundamental mode diffusion, and a somewhat more spatially

ca-l‘::stric'tgd distribution. The linear range of the computed reciprocal of the
(averaged densi‘des)"1 versus time’ cui‘vés is determined and correction
factors are derived which, if applied to the observations, yield thé corrected
recombination coefficients from the curves. The corrections derived in the

two- and three-dimensional analyses are found to be significantly larger than

those obtained in the ong-dimensional analyses. Also, when considering

*This research was supported , in part, by the Defense Atomic Support Agency

and the Army Research Office (Durham) , DA—Bl—th-ARO{x@-G-SlB.
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plasma containers of different shapes but of the same fundamental diffu- ,'/‘
sion length, a larger surface/volume ratio is found to be equivalent in
effect to an increased diffusion coefficient in the predicted decay:s ..ﬁn/:#
_most-cases of practical interest, though, a much stronger dependence upon
the varying p;obing field distributions is found when different container or
dimensions are to be compared, When.thé present analysis is applied to
one-dimensional geometries, recombination corrections in agreemént with

the results of Gray and Kerr are obtained.



I. Introduction

Some of the principal methods of studying electron-ion recombination
involve determinations of the rate of decay of electron density from an ini-
tially ionized gas, i.e. afterglow studies. The interaction of free electrons
in an ionized gas (plasma) with a microwave probing field provides a conve-
nient method for determining the average electron concentration dtiring the

afterglow. It has been shown (1) that the electron current density J which

~ flows at a given point in space inresponse to an applied field E of angular

frequency w is,

2 .
J= 0oE =(ne’/lm@q+w)D-E .,
POV A -
where § ¢! the complex conductivity, is given by the term in parentheses on
the right for the case of a collision frequency, v ¢ which does not depend on
electron energy; n, e, and m are electron density, charge and mass, respec-

tively.

In general, the various microwave cavity and waveguide propagatioh

techniques (2,3,4,5)

measure the real and/or imaginary parts of (J ‘E ) .
For example, according to perturbation theory (6) . the change in Q and the
resonant frequency shift, AFO , of a microwave cavity containing a con-

ducting medium is given by

3

_l_) _ _2ipFg ~ 1 . ‘fcavl'gdr
F oe w

Qe % Yoe J; 2 &3

1
(75;-
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where the subscripts o and oe refer to the cavity, respectively, with

and without the ionized gas, and € 5 is the permittivity of free space. Thus,

2,3
E d
AFo e? . gavn(z) @dr (3)

F 2
oe 2me, (wioetw ) | o BE@ddr

The integral in the numerator is non-zero only in that part of the cavity occu-

pied by plasma ahd could therefore have been restricted to that volume.

(6)

If we introduce a "microwave-averaged” electron density,

o —_

2 3 2,y 33
uw:f n(r) E%(r) d E/f B () d° r =G AF, “

cav cav

we see from eq. (-3) that this form of averaged electron density is directly

related to the measured frequency shift by the coefficient

2 2

4Tme (O, +% )
’ (5)

2
w
oe ©

without making assumptions concerning the spatial form of n @ . This point

is discussed further in Sec, II.

In order to obtain quantitative determinations of electron-ion recombi-
nation rates from the observed decay of the average electron density (inferred
from such measurements as cavity frequency shift), it is necessary to solve

the electron continuity equation for n (r, t) and from this to form the appro-

o~



priate average, such as T’uw (t), to compare with the measured values.
In bractice, this has rarely been done. Instead, unrealistic assumptions
have been made to simplify the analysis ( Le. that the electrons maintain
a uniform distribution in the container throughout the afterglow) or appeal is
made to correction factors derived by Gray and Kerr (7) from computer solution.s,
of the electron continuity equation for one~dimensional (infinite cylind‘er, |
sphere) configurations. |

The present paper extends the work of Gray and Kerr to numerical solu-
tions of the recombination and diffusion controlled electron continuity equation
in more realistic, three-dimensional configurations (finite cylinders, rectan-
' gular parallelepipeds). From these solutions,correction factors for various

plasma container and microwave probing field geometries are derived.

II. Electron Continuity Equation

We assume that the electron energy distribution has reached a station-
arjr form in the afterglow, so that it is only necessary td consider the coor-
dinate space electron continuity equation. On the assumption that electron
préduction ‘terms are negligible and that the only significant volume electron

" loss is recombination, the continuity equation becomes

ar; ~ Dalvznw:nn2 6)
P .

where Da is the ambipolar diffusion coefficient and a is the rate coefficient
of a two-body recombination process, such as dissociative recombination.
In this form, it is assumed a) that there is only one species of positive ion and

no negative ions,and b) therefore, as a result of quasi~neutralityof a plasma, the



densities of electrons and positive ions are essentially equal, and c) that
the Debye length is always much smaller than the container dimen.s.icﬁns, SO
that ambipolar diffusion holds throughout the afterglow period uncier consi-
deration, In an analysis of this type, other production and loss terms can

be (and havelbeen) included, for example, metastable ionization and electron.
attachment to neutrals; however, a discussion of the resulting solutions of
the continuity equation is beyond the scope of the present paper.'

The boundary condition n = 0 at the walls of the container has been
applied and several different initial electron distributions, as described in
Sec, III b,were used. By means of a numerical integration scheme (see Sec.
III ¢ ) a solution of eq. (6 ) with its initial and boundary conditions, is
obtained. Thus, mean densities according to eq. (4) can be ev_aluated for
various modes of the probing field EQ-(E‘) . The time variation of the computed
average ﬁu w 'is then obtained for various values of the récombination and
ambipolar diffusion coefficients, & and Dy .

In order to provide correction factors for use in recombination studies
which do not employ the detailed solutions of eq. (6) together with compu-
tations of n W through eq. (4), we proceed as follows. If one neglects

the diffusion term in eq. (8), the well-known "recombination solution".

1/n(, = {I/m@o]+a SN

where n (r , o) is the initial electron distribution at t=o, results. In many
studies it has been customary to-assume that the electrons maintain a uni-

- form distribution throughout the plasma container during the afterglow., Thus,

from eq. (7), the decay of this uniformly distributed electron density, n, . is



given by
1/ny® = 1/n,(0) + at. (8)

It has been shown (7.8,9)

thét the identification of the slope of a l/nlu vs
t plot as the desired recombination cbefficiént is substantially in error when
actual electron spatial distributions are considered.

The method of quantitatively correcting such data to fing ¢ involves

1ntroduction of an alternative "microwave averaged" electron density,

n(t) = ﬁ(r t) E2 (r) d3 E2 (r) @By = ¢’ AF %
plasma plasma

vol vol

where by restricting the integrals to the plasma volume, we have a quantit{r
n (t) which reduces to nu(t) if we assume the electrons to be uniformly dis-
tributed throughout the plasma. Again, n (t) is directly related to the mea-

sured f;‘equéncy shifts by the coefficient C' = CG, see eq. {§), where G

1s the geometry factor
{IE (r)d/ IEZ (r)d3 - (10)
cavi plasma

vol

By thése definitions, we have introduced a quahtity, n (t), which is readily
obtained from the computed n (r, ) values and is equivalent to the quantity
which is oftén used for presenting the experimental data in recombination
analyses. We have also provi-déd for the often-encountered experimental
condition of a plasma Which is restricted to less than the full microwave

cavity yolume. For some useful expressions of G in terms of the container
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and cavity dimensions, see the appendix.*

Although the solution of the continuity equation, eq. (6), including
the diffusion term,can not be expected to follow the form of eq. (8) through-
out the afterglow, it is found that there are ranges of 1/n (t) values for which
an approximately linear increase of 1/ i with afterglow time is observed.
Thus over a certain time interval we may represent the observed electron den-
sity decay by a straight line,

- (11)
1/n(t) = 1/n (0) +at

- where 'the slope a is to be related by appropriate factors to the desired

recombination coefficient,a . If we define the "linear range" of eq. (11) as
the ratio f between the largest and smallest values of 1 /n (t) for which
the data point§ or computed curves lie sufficiently close ;co the best-fitting
straight line, on S 1/n vs t plot, then the necessary correction factor A

between a and g, defined by,

= a (1 -4) (12)

is directly related to the value of f, i.e., A=A (f). . The correction fac-
tor A also depends on plasma container and cavity shapes and dimensions,

on the microwave probing field distribution and on the initial electron spatial

distribution.

* Tt should be noted that G depends not solely upon the geometries; it is
somewhat dependent on the field distributions, too.
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III Method of Obtaining Correction Factors

We wish to obtain values of the correction factor, A , for the wide
variety of experimental conditions that are encountered in the various re-
combination studies. In what follows we shall adopt the pattern set by Gray

7y

and Kerr . In particular, we shall use their terminology and mathematical
formulation (though not their integratibn method) of the problem, which we
briefly review here. Eq. (6) is replaced by a "normalized" equation, in which

the variables and functions are dimensionless.

3N - v2ny-N2 (13)
oT

where
B:(ano)/(Da/Az) (14)

The normalized density N = n/no is obtained by dividing the actual densities

n=n (~r_.;t) by the initial central density n,. The normalized time variable

T = (Da / Az)- t is proportional to the real time t, the coefficient of proport-
ionality being the ambipolar diffusion coefficient divided by the square of the
fundamental diffusion length (see Sec. III f). The normalized cartesian g,

n , L , and cylindrical coordinates‘f-’ and { ', respectively, are obtained by

~ dividing the respective spatial vari:ble‘s x,¥,2, rand z, by A ., The "norma-

lized" recombination coefficient 8 is proportional to &, eq. (14). The boun-

dary and initial cqndifions fqr the normalized density N are simply that N=0

ét the walls and that the initial value be 1 at the center of the container, N (g,0)=1 .
In our work two and three-dimensional "normalized" Laplaceians for rec-

tangular and cylindrical geometries are used, i.e.,
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2 2
A I (15)
3p p op 38
and
2 2 2
v2 = ) + 3 - + 32 (16)
JE an ar

We have also used one-dimensional normalized Laplacians for infinite parallel
planes, for the infinite cylinder, and for the sphere. In this way we are
able to compare our results with previous solutions of the continuity equa-

tion. (7, 8")

a) Surface-to-volume ratio. Because of the enlarged number of parameters

in two- and three-dimensional solutions of the continuity equation, we seek
those parameters which permit the correction factors calculated for a limited
number of plasmé_container shapes and probing field distributions to be applied,
with reasonable accuracy, to other cases. One such parameter is the ratio of
the surface A and the volume V of a plasma container, which we introduce in

normalized form by multiplying by the fundamental diffusion length A, i.e.,

g = (A/V) A (17)

Physically, this is an important parameter, since the electron loss by recom-

bination occurs throughout the volume of the container, while ambipolar dif-

fusion loss to the boundaries depends on the surface area of the container.
It is a straightforward matter to show that, for a finite cylinder of nor-

malized dimensions %% and { o' 9= 2 [ ( l/po) + ( 1/Co)] and for a

rectangular parallelepiped (go, n o'c 0) . g=2-[ (1/%0) + (1/n o)+(1/CO)] .
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For the "one-dimensional" geometries; we find, g = 2/ for infinite
parallel planes, g = 2/ (2.405) for infinite cylinder, and g = 3/m for the

sphere. Thus, for essentially all of the geometries employed in recom-

bination studies to date g-values lying between 0.64 (parallel planes)

and 1.10 (cube) are encountered. It is of interest to note that different
container geometries may have equal g~ values. For example, there is a
variety of finite cylinders and parallelepipeds having the same g - values

as spheres or the infinite cylinder, see figure 1.

b) Initial density distributions. In order to integrate eq. (6) or eq. (13) ,

we require an initial condition -~ the electrons' spatial distribution at t = o.
Experimentally such initial distributions have been crudely determined, at
best, by such techniques as observation of the spatial distribution of the
spatial distribution of the radiation accompanying the recombination process
(©, 10) . In order to embrace the variety of initial distributions encountered
in practice, we have used the fundamental mode diffusion distribution raised
th st nd . -
to the 0=, 1= and 2 — powers. Thus, for a finite cylinder, initial dis-

tributions of the form

k - (18)
N(r,z,0) = ]0 (2.4 r/ro).cos (m z/zoﬂ
and for a rectangular parallelepiped
. k
N(x,v,z,0) = [cos (wx / x_)-cos (my/ yo)-cos (TrZ/ZO)] (19)

are used. For k = o we have the uniform "recombination controlled" dis-
tribution, for the "squared diffusion distribution", which is a plasma approxi-—

mating the "plasma bali®" mode of discharge sometimes noted at higher gas



T W Wy T ——

12

pressures. In practice, observations of the spatial distribution of recombi-

nation radiation and comperisons between computed and observed electron

(10, 11)

decays in neon have indicated that k values lying between 1 and 2

best approximate practical initial distributions.

c) Computer Solution Method. The several sections of the computer pro-

gram are briefly reviewed here. In one section, the differential equatibn (13)

is solved by replacing the time derivative by the (crude) "forward difference

quotient"

3aN/3T~> [Nl('r+A'r) - NL,] /b7, o (20)

which has been reported (12)

to be a much better substitution than other ex~-
pressions of a higher approximation, for parabolic equations, The spatial

derivatives are replaced by the second order expressions

3N/3p - EI‘(PMD) - N‘(D-A pﬂ /2Ap | (21)
and
azN/apz"E“‘(p wap Mo+ N - oy [ jan)2 (22)

Similar expressions are taken for the derivatives with respect to g , N, L -

In this way, a very simple, explicit formula for "new" density values at the
time (v 4+ A7) is obtained from the knowledge of all density values at the time
T. This formulation is well-behaved in the computation, if the temporal incre-

ment Ar does not exceed the limit, Aq %’ given by

ma
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aroson = (2007002 4 aem? + (1/003} 7 @
and
av s o= {2[a/00? + 0217 (24)

for finite cylinders and parallelepipeds, respectively. The duantities ’ Ag
An , AC and Ap designate meshwidths inthe §,7m ,{ and p directions.
| In our computatibns, the condition eq. (23) or (24) has always been met.
. Thus,‘ the sqlution of our differenée equation converges to the solution of the
-Adifferential eq. (13) as the mesh is refined 1z, 13 ). At the same time, ap-
plicafion of this condition produced a favourable behaviour of our computation
schéme with regard to the propagation of errors, such as truncation errors(lz).
The selécted time increment pg is computed anew at the start of each
cycle. Initially, .the recombination term -g N2 in eq. (13) is much more

2N, and time increments are needed which

important than the diffusion term v
‘are a small fraction of the upper limit, eq. (23) or (24). vIn this case AT is
chosen so that the temporad decrease of N at the center is a small fraction
(usally 1%) of the center dénsi_ty at that time. However, as this process is con-
tinued, with increasing time N decreases and the‘ quadratic term becomes less
and less important., The At values thus_ computed finally become larger than
' the limit. In this case, Aris set ecllual.to the limit given by eq. (23) or eq. (24).
When the dénsity values at all spatial mesh points have been obtained
ata given timé T, the average, eq. (9), is computed and recorded and, by

means of an interpolation programme, the function 1/ N versus T is eval-

- uated at equidistant time intervals, Finally, a straight line Y=Y% +8t is
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sought to optimally fit the linear portion of the function 1/N , as suggest-
ed in the discussion of eq. (11). We used Tshebysheff polynomials and a
least mean square curve fitting method(14). An upper and a lower time limit,
Tu and T, , are thén found such that the 1/1:1 curve deviates by ¢ from
the straight line. le -was set equal to 2% of the arithmetic average of the

upper and lower reciprocal density values

€=0.02{ /T (r)) + /K (r,)}/2 (25)

The part of the 1 /'N versus T - curve between ’"rlz and Tu is called the "linear

‘portion” of this curve. The linear range f introduced earlier may be defined

as

f = N(t,) / N(t) (26)

and the correction factor 4 introduced in eq. (12) expressed in terms of nor-

malized quantities,

A= (S-B)/S = (a-0a)/a (27)

From the computations, both f and A have been calculated as functions of the
parameter B . These data are presenté‘d'in figs. 2 through 7 and 9 through _22.
Since different straight lines can be found-for different portions of
.one calculated 1 /N y_§_ T curve, we used a program to select, ‘from among
the many straight lines, that line which gave a maximum £ value in following

the curve, For larger B values ( ) 20) , one particular straight line clearly
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exhibited maximum f wvalue, so that ih these cases, the f and 8 values
selected are uniquely determined. For smaller B's, when occaéionally
séveral or many "optimal" straight lines were found with almost constant

f 's, the particular one embraéing the earliest afterglow interval was chosen,
All other ones exhibitedlarger correctionfactors A , It should also be noted
that, in the 'majority' of th‘e computed cases,the 1/ N wvs T curves exhibited
sufficiently small initial departures frorﬁ stralght lines that T was equal to

zero time,

d) Microwave Probing Field Modes. An additional objective of this inves-

tigation is to study the effect of various microwave field weighting functions,
‘.EZ, in the evaluation of the averaged density, eq. (9). For cylindrical plasma

containers we have considered cylindrical cavities excited in the TMOlO"

(15) . The corresponding weighting functions are,

a2 T ) + J,"‘z(o.\ cositra/e,  wWhere
2 | 2 2 - 715

E®=(J, (2.41/r))]" for the TM;,, mode, E* = [ SN

=18t vy, '

TR

TElll' and TEOll modes.

for ihe TElll mode, and E” =[ 11(3.83 r/rl)- cos (ﬂz/zl)]

for the'TE011 mode, (Thelzé subscript}‘/indicates cavity dimensions.) We note
that, for a TM010 mode, the field E2 is a maximum at r = 0 and falls mc_moto—
nically to zero as r approaches the cavity radius r 1° There is no z- depen-
dence of tﬁe field, thus the field at the flat end walls of the cylinder is non-

vanishing, Fora TE mode, we have amaximum field in the center, with

111
monotonically falling field strengths toward the walls in both the r and z
directions. For this mode, the field vanishes at the flat end walls, but not

. at the clyindrical walls. The TE 011 mode has the same z-~dependence as TE111

but ‘E:2 is zero everywhere on the center line, increases initially with increas-

inc r and finally decreases to zero as r approaches ry.
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For rectanguler parallelepipeds, a TEmlmode is used with a corresponding
weigﬁting function, E2=‘_cos (‘)TY/Yl).COS (nz/zl)‘l 2. The weighting func-
“tion is constant in the x-direction, with non-vanishing fields at the walls per-
pendicular to the x-axis. In the y and z directions, the field falls monotonically
to zero at the walls,

It is clear that different weighting functions emphesize different regions of’
the plasma in terms of their effect on the frequency shift, AF o* The cylindrical
TM010 mode de-emphasizes, for example, a sheath in the vincinity of the cy-
lindrical walls ( and thus is the ideal mode for long cylinders). However, the
regions near the end walls are important. Conversely, for cylindrical TE111
rnodes, these.end wallregions are rxnimportant (therefore, this is a much better
-mode for short cylinders than'TMom)_, but the sheath close to the cylindricel
walls is relatively important in this mode, An mterestmg feature of the TEoll
mode is its de—empha51s of both the regions near the cylindrical and flat end
walls, and it may therefore appear to be the most desirable probing field. In
this mode, however, the important central region is completely ignored, indicat-
ing its lack of usefulness in the case ;fe/\hgfaresfna containers whose radial dimen-
sion is a small fraction of the cavity radius.

The rectangular TElOl mode de-emphasizes four of the six wall regions. For
reasons of mode purity, the heightin the field direction (x direction) should be
the smallest dimension. This means, unfortunately, that the sheath areas near-
: 5!86_6_1_)
est the two largest walls are emphﬁas_t by this field.

" The differences in these weighting functions produce significant differences
in the correction faetors associated with each of fhese modes, Earlier studies(7)
considered the cylindrical TM

010 probing mode only, since this is the onle use-

ful mode for one-dimensional geometries. As a consequence, correction factors

‘evaluated for this mode have been used in the past to correct experimental data
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obtained with qther probing modes, a procedure which can introduce signi-

ficant errors.

e) Filling factors. Some or all of the dimensions of the plasma container

may be smaller than the cavity dimensions. We take account of this effect
through a group of dimensionless parameters, Y , the ratio of the appro-

priate container and cavity dimensions, e.g. Y, = ro/rl' Y,=2./2 1’

etc., where r0 and zo indicate the plasma container dimensions.  The sub-
script on y indicates which one of the coordinates is considered. For
cylindrical geometry, we usually give data for four Y» values;

'Y =1 (complete filling,wh ich means Y=Y, = ., vy, = 1/2 ( which implies
here v_ = 1),y z=1/2 hich impliesYr=1) and Y=0 (i.e. Yr=Yz=O . or a
uniform probing -field). In the case of the -TM010 mode, the set with v 7= 1/2
js omitted because of its triviality; in the z direction, the probing field is -
constant and thg conditions are really the same for any vélue of v 2 in that

Case,

f) Fundamantal Diffusion Lengths

As noted in the earlier sections, one of the parameters which is required
in evaluating the various normalized quantities, such as 8 , is the fundamental
mode diffusion length, A . For simple geometries, A is readily obtained
by separation and solution of fhe diffusion equation, 3 n/3t = Davzn, sub-
ject to the condition that n goes to zero on the boundaries of tﬁe plasma
container, Thus, for a plasma coniaiher in the form of a righf circular cylinder
(dimensions T zo) one has 1/ AZ = '(2.4/1'0)2 + ('n‘/Zo)z, for a rectangular

. 2 2 2
parallelepiped (dimensions x_: Y. Z). 1/1\z ___"2 (I/x" + 1y, +1/2 ),

o

and for a sphere (radius ro), A = ro/ﬂ . For more complicated plasma con-

(10)

tainer geometries, e.g. a cylinder with conically tapered ends , it is
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necessary to evaluate A by computer solution of eq. (6) or eq. (13) with
the recombination term set equal to zero. In this case, the final time con-

stant, T, of the decay in the late afterglow is related to A by A = (Dan) 1/2.

III. Results

a) One-dimensional geometries. The results for simple, one-dimensional

container shapes are given in the- fig. 2 through 7. From fig. 1, one finds
‘ that the three different geometries as presented here have increasing surface-
td-volume ratio; thus a comparisoﬁ of the results displays the effect of the g-
. values. Since the weight functions Ez in eq. (9) affect the results strongly,
we have compafed the results for the case of a constant probing field, y =o,
\Only. .

Furthermore ,- such a comparison can be made for k=0 only, because only
then .are the mean initial densities the same for p'araHel plates, infinite cylin~-
‘ders and spheres. For k # o, the initial mean densities are different; for
example, for k=2 their ratios can be shown to be approximately 1:2:4, If k is,
in each case, adjusted to provide the same initial average, the results may
again be compared. However we then arrive at nearly the same conclusions
as for the k=0 cases, wﬁich we now compare.

As can be seen from fig. 2, 3b and 4 at constant B, the linear ranges f
decrease and the corrections A increase as the surface-to-volume ratio g
increases. We thus see that a relatively large surface increases the effect
of diffusion lo.ss markedly. When we compare the parallel plate case with
the sphere, we note that approximately equal f-values and p -values are found
in fig. 2 at twice the g -values of fig. 4 We thus conclude that a 50% increas:

in the curface-to-volume ratio may be offset by a 50% reduction of the diffu-
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sion coefficient Da (which enters reciprocallyin the expression for 8 ),
leading to essentiélly unchanged f and A -values.

This conclusion is further confirmed, to some degree, by comparison
of‘ other geometries with different g~values. The f and & -curves for the in-
finite cylinder (Fig. 3b), whose g-value is.30% largef than that of the parallel
plate configuration, nearly agree with those given in fig. 2 as B is
increased by 30%, and similar observations can be made for some.ﬁnite cylin~
ders with the same and higher g-values, fig. 13. In comparing othér geome~-
.tries, however, both the f-curves and A -curves exhibit ldifferent curvatures
(for example _cofnpare the case of a cube, fig. 20, with the parallal planes)

. and the simple relation noted above can not be pushed too hard. Thus, qua-
litatively, an increased g-value leads to a stronger influence of diffusion and
is comparable to an increased diffusion coefficient in geometries having sméller
g~values (provided comparisons are made with comparable probing field dis-
tributions and initial density distributions). -

By comparison of fig. 3a and 3b it can be seen that the effect of a prob-
ing ﬁeld on the f and the A versus B curves is much stronger than the effect
of g. The much larger f's énd smaller A 's in fig. 3a are due to the de-empha-~
sis of some wall areas by the weight function E2 (eq. 3), especially for the
case of equal container and cavity dimensions .(Y_= 1).

Since in most experiments, the value of B is not known beforehand
(because of the unknown a and n, values) we give our corrections A as func-
tion of the linear range f, a directly measureablef quantity, see figs, 5 through
7. In this repfesentation, for k=0 andy=0, the curves of A versus f agree
closely fox; the three container shapes under consideration. In this presenta-

- tion, the effect of the different g-values is thus automatically eliminated.
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Our results for the sphere and for the infinite cylinder, for k=0 and
k=1, are found to be in rather good agreement with the results of Gray and

(7)

Kerr''’, though certain small deviations occur. We verified their compu-

tations of the 1/N versus r curves’f as far as they are given in their paper
(7), yet we found slightiy different f'an_d A wvalues, in some cases. Thus we
conclude that theseauthors have used a somewhat different evaluation pro-

ceduré. These observed deviations are very little, though, and we feel that

our work essentially confirms the earlier results,

b) Finite cy}inders. The computed values of N (r,z,t) which illustrate
_the evolu'tion' of the spatial distributions for a finite cylinder (ro=zo= 3.9647 ),
are given in fig., 8 for B8 =550, Three different initial distributions are assumed.
The uniform initial density distribution (k=0) changes rapid_ly in appearanc’e{

in particular thé sharp edges smooth out rapidly in the wall areas, and after

a short time, «r~é few hundredths, a nearly time-independent "stable"form

of distribution has been established. There is very little change in this distri-
bution until T approaches the values of 0.2 to 0.3. For larger times, above
0.4 or 0.6, the distribution approaches a fundamental diffusion mode distribu-

tion, which is maintained after the time 7 =2.

* There is only one exception, their fig. 8, which we believe is wrong in
the time interval. o<1 < 0.035, Our computation gives an approximately
linear rise of the same slope as for T =0.05, but not the steep slopes they
obtained, presumably by using too large time incrementsy in this case.
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The evolution‘of an initial fundamental mode diffusion distribution is
shown in fig. 8. Again we find (at the s‘amé B - value) a very rapid formation
of the "stationary" distribution and 'slow return to the diffusion distribution.
For comparison, the case k=2 has also been illustrated, It can be seen that
here the initial extent of the plasma is somewhat restricted, approximately
to one-half the container dimensions, if the surface where the dencities ar
half the central densities is-taken as the boundary of the plasmé. However,
the differences in the distributions, for different initial distribution, are small
for times above T = 0.1, |

It is of interest to note that for this B value (550), under favorable con-
ditions ( such as 'Yzz'Y = 1), the linear portion of the 1/1-\1 versus T curves
lasts from 7=0 to v = 0.2 and under less favorable conditions (Y < 0)
only from 0 to 0.025. In the latter case, the differénces in N__ (r,z, v ) due to
different k's are qﬁite' significant.

In order to presént the data for finite cylinders, a hew parameter zo/ro,
the ratio of container length to radius, is introduced. For most practical cases,
this ratio will be of the order of unity, i.e. between 0.1 and 10. According
tc eq. 17 or fig, 1, this means that the surface-to~-volume ratio g will prac- -
tically always be close to 1. Thus the small changes of the parameter g may
be dis;egarded, if different finite cylinders of practical interest are to be com-
pared.

The importance of the new parameter zo/ro at large filling factors (y = 1)
is obvious. If We compare the results of fig. 9a with fig. 10a, we find very
different £ and A—Values, the only difference being the parameter zo/ro,
which equals 1 in fig, 9 and 2.3 in fig. 10. These differences nearly disa -

ppear, though, as rapproaches 0, It thusis clear that the probing field,
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which emphasizes certain wall areas, aependlng upon zo/ro , 1s responsible
for these differences. Similarly we note by comparison of fig, 9a, b and-c
(or fig. 10a, b and c) that for a constant zo/ro, but varying probing fields,
very different f and v-values result, for the same reason. '

| The significance of the parametér z o/ro for the experiment can be seen
from the figs. 11 fhrough 19, where the corréctions A as function of f are
plotted for several microwave field modes and filling factors, Particularly for
k=0 and small f values ( { 10), butto a ‘lesser extent also for k=2. and k=1,
an influence of z o/r o fs found. Fory =0 (fig. 13) very small differeﬁces (if
any) can be ‘seen, indicating the reiative unimportance of smali changes in g
for these cylinders.

A comparison of the results for finite and infinite cylinders with a TM010
probing field (see Table I) , figs. 6a, 11, and 12, shows that the con"ections
A are larger for the ﬁr_xifte cylinder. (l‘h’e differences are more prohounced if
the f's and A 's at an equal B are compared.) This is easily understood from
the importance of the flat end wa11 'areas,- for this mode, whereas the 'density
gradient in thevz-direction is absent in the infinite cylinder case. This is
one reason why the infinite-cylinder correctibn factors ) lead to under-
correction of recombination data obtained with finite gyunders when scaling

to the same A or B values is used.



Table 1. Cylindrical container dimensions used
in the computations.
zo/l\ r, /A z / r, g
® 2.4 ® 0.831
13.6 2,475 5.5 0.954
‘6.28 2,775 2.3 1.04
4.45 3.41 1.3 1.04
3.96. 3.96 1.0 1.01
3.56 5.09 0.7 0.954
3.26 9.3 0.35 0.831

23
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c) Parallelepipeds. For rectangular parallelepipeds, two new parameters,

xo/zo and_yo/zo, are used. Again, it is assumed that these parameters are,
for mést practical purposes, roughly of the order of unity, which means g-values
of about 1. Under this assumption, g &an again be considered to be nearly
constant, and we may disregard g when different parallelepipeds are to be
compared. |

In fig, 20 the f and A versus B curves for a cube are given. (In

A practice, cubes are unlikely to be used because of the desired mode purity.

Ordinarily, one side will be made somewhat smaller. However, because of
the litFle infhience of g and the constancy of the field i;f:; direction, the

cube data are in fact a very close approximation to many real cases). These
values represent, for a constant probing field ( y=0), the smallest f's and

A 's of this paper, because of the large g value (1.1). Figs. 21 and 22 present
a survey of all our computations for this case (see Table 2) and show that

the parameters xo, Yo' zo are of modest influence for moderate variation in

their values,.



Table 2. The parallelipiped dimensions used in the presex{t

computations, (Lower case letters refer to Figs. 21

and 22).
‘xo Y, %o g
A A A
a 5.44 5.44 5.44 1.10
b 4,21 5.27 10.5 0.95
3.49 9.95 10.47 0.95

3.4 8.7 26.2 0.83
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IV, Conclusion

A numerical solution has been obtained to eq. 6, which descx‘ibeé
the‘ electron density decay in an afterglow, in the absence of electron 4
production processes and under the assumption that ambipolar diffusion
and two-body volume recombination are the only electron removal processes.
We have considered several one-dimensional geometries, "two"-dimensional
finite cylinders and three-dimensional, rectangular parallelepipeds. From
these solutions, we have calculated the time-dependence of the méan
electron dénsity for several modes of the microwave probing field, which
hav_e then been used to derive corrections to be applied to the measured
slopes of the experimental 1/n versus t curves in order to obtain the actual
two-body recombination coefficienta . It is shown that these corrections
depend upon the nuﬁxb’e_r of dimensions in the Laplace operator, the surface-
to-volume ratio g of the container, the microwave probing 'field mode and
| certain dimensional parameters :such as zo/ro (for finite cylinders). It
has been found that, for many practical purposes, a number of parameters

~

can be disregarded.

(7)

The results of an earlier one-dimensional study have been confirmed
and extended. The need for a more-dimensiqnal treatment for most céses of
practical interest has been demonstrated. In addition, a third initial distri-
bution ("éonstrictec_l " or squared diffusion distribution) besides the two

(7,

previously considered 8) ( namely, recombination and diffusion controlled

distributions) has been included. The "constricted" distribution has been
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found to be of practical interest in recent studies(lo’ ll),

especially
at higher pressures where the initial density distribution is approkimately
described by a function of the form of eq.(21)or(22), with an exponent
between 1 and 2, rather than between O and 1 as has usually been assumed.
Finally, since in evaluating an'experimenta; measurement <the value
of o (and therefore of B) is initially not known, one uses the value of
the linear range f, determined from the 1/f versus t curve, to obtain a
preliminary value of ¢ from the measured slope, a, by use of the A ngggg_f
correction curves and eq. (12). With this value of O, one computes p and
then obtains & more accurate cofrection factor from the A versus p curve.
If the value of 0 so determined differs appreciably from the preliminary
value, & new value of B is computed and & new correction factor, A, is
determined. This iterative procedure avoids the possibility of efror that
an enhanced or diminished f value [e.g., resulting from ionization or
electron loss procegses not considered in the solution of egs. (6) or (15)]

would introduce.
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Appendix., The geometry factor G introduced above can be expressed
in terms of elementary functions, in many cases. For cylindrical con-

tainers and cylindrical cavities, we obtain for a T M, mode (x=2,.4r o/rl)

]12 (2.4)

G=(r; /r)? . . (zy/25)  (28)

1.2 e +1,% 60

o]

and for a TEgy; mode { x = 3.83 ro/rl)

j, (3.83) T, (3.83)

: z
G= (rl/t"o)2 . . (z,/2) . (1-% cos(2n ;—:—)-)) (29)

7,260 +7,607, &)

The In (%) are-ordinary Bessel functions, and ]‘nz(x)means the square of

T, &).

-Erratum .
The—squafed—ﬂeﬂld—fer—a—cyﬁndricalqﬁi—ﬁ-mode-- (page-15}) should-read—(x=1.84~
N TP N IR SRS L

x2 1 . A 21
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Captions

Fig. 1: The normalized surface-to-volume ratio g for several simple container
shapes, as function of their reciprocal length zo,‘ multipl_ied by 7 and the

fundamental diffusion length A .

fig. 2: A and f values for a parallél plate geometry, for a uniform probing field
(y = o), as function of 8 . K is the exponent in the initial distribution, see -
sec. IIb. The circles, squares and triangles indicate the computed values

used for plotting the curves.

fig. 3: A and f values for infinite cylinder geometry, as function of 8 .

a) The probing field mode is TMo and the ratio of container to 'c'avity radius,

10
Y. = ro/r1 , equals 1 énd 1/2, respectively. K is the exponent in the initial
distribution. b) The probing field is assumed to be constant (y= o) . The

circles, squares and triangles indicate the computed values used for plotting

the curves.

fig. 4: A and f values for spheres, as function of 8 . A constant probing field
is assumed. K is the exponent in the initial distribution. The circles, squares

and triangles indicate the computed values used to plot the curves.
fig. 5: Corrections 4 as function of f, for parallel plate "containers".

fig. 6: Corrections A as function of f, for infinite cylinder containers. a) Yr =1

and = 1/2. b) y= 0.
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fig. 7: Corrections A as function of f, for spherical containers. A constant

probing field is assumed ( Y= 0).

fig. 8: Electron density distribution at different times in the afterglow, as

function of r and z, for a finite cylinder. r,=z, = 3.96 A, B= 550. The

- densities of this plot have to be multiplied by the time dependent factor No’

which is given for each case. a) A constant initial distribution is'assuméd.
b) A fundamental diffusion mode initial distribution is assumed. c) An initial

“squared diffusion distribution", with an exponent K = 2, is assumed.

=1 =

fig. 9: A and f values as function of 8 , for a finite cylinder with z

3.96 A, g=1.01. Y, = 1 and = 1/2.

mode, ¢) Tl'::0 mode probing field.

a) T™M 11

mode, b) 'I‘E1

010 11

fig.10: Same as in fig. 9 a, b,c, but changed cylinder bdimensions: ro =2,7754,

z =6.283A, g =1.04,

mode, ¢) TE0 mode.

a) ™ 11

mode, b) TE1

010 11

fig.11: Corrections A versus f, for finite cylinders and a TM010 mode. The ratio

zo/_ro varies from .35 to 5.5, the filling factor being 1 ( Y. =Y, = 1).

fig.12: Same conditions as in fig. 11, except Y =T, / r, = 1/2.
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fig. 13: Corrections A versus f, for finite cylinder geometry , and a constant

probing field ( y = o). The ratio z / r, varies from .35 to 5.5.

fig. 14: Corrections A versus f, for finite cylinders and a TE mode,

111

Y=Y, = 1.z0/rQ varies from .35 to 5.5

fig. 15: Corrections A versus f, for finite cylinders and a cylindrical.TE111

mode, Y, = 1 and Y, = 1/2. zo/ro varies from .35 through 5.5

fig. 16: Corrections A versus f, for finite cylinders and a cylindrical TE111

mode, Yr =1/2 and Yz =1, zo/ro varies from .35 through 5.5 °

fig. 17: Same conditions as in fig. 14, except that a TE011 mode field was

used.

fig. 18: Same conditionsas in'ﬁg. 15, except that a TEOll mode field was

used.

fig. 19: Same conditions as in fig. 16, except that a Tl'-.t011 mode field

distribution was used.

fig. 20: A and f versus B for a rectangular parallelepiped with X =Y, =

z0 = 5.44 A , Equal container and cavity dimensions have been assumed

( v = 1) as well as a constant probing field ( y= o). The field distribution

corresponds to a rectangular TElOl mode.
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fig, 21: Corrections 4 versus f for parallelepipeds and a TE101 probing
field, for equal container and cavity dimensions. The meaning of the letters

a,b,c can be seen from table 2. The two container dimensions listed under

c) gave nearly the same data,

fig, 22: Same conditions as in fig, 21, except for a uniform probing field

(y=20).
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